Generates a full experimental design for an experiment.
fullfact(xprmt, ...)
xprmt | An object of class |
---|---|
... | Vectors used to overwrite columns of |
An object of class experiment
with a full factorial design of
the inputed experiment
.
This function is basically a wrapper around the
expand.grid
function applied to all the column of the
inputed experiment
object. Any of these columns can be replaced by
user-defined vectors of values, see examples.
#> Loading experiment "sir" from file "sir.gaml"...#>#> Periods of observation ("obsrates") are converted into integers.#>#> Final time step ("tmax") is converted into integer.#>#> Seed is converted into numeric.#>#> Parameters' types are cast according to model definition#># 1. First type of use: tranforming an experiment into one with a full # factorial design: (use the function `repl`, if you want more details `?repl`) sir2 <- repl(sir1, 3) sir2$p_S0 <- 1:3 sir2#> Experiment with 3 simulations of 5 parameters and 3 observed variables #> experiment name: sir #> input gaml file: /Users/mac/Desktop/rama/inst/models/sir.gaml #> model parameters: p_S0, p_I0, p_R0, p_beta, p_gamma #> observed variables: r_S, r_I, r_R #> Experiment overview: #> p_S0 p_I0 p_R0 p_beta p_gamma r_S r_I r_R tmax seed output #> 1 1 1 0 1.5 0.15 1 1 1 1000 1 NA #> 2 2 1 0 1.5 0.15 1 1 1 1000 1 NA #> 3 3 1 0 1.5 0.15 1 1 1 1000 1 NAsir2[1, 2] <- 2 # "sir2" is not full factorial: sir2#> Experiment with 3 simulations of 5 parameters and 3 observed variables #> experiment name: sir #> input gaml file: /Users/mac/Desktop/rama/inst/models/sir.gaml #> model parameters: p_S0, p_I0, p_R0, p_beta, p_gamma #> observed variables: r_S, r_I, r_R #> Experiment overview: #> p_S0 p_I0 p_R0 p_beta p_gamma r_S r_I r_R tmax seed output #> 1 1 2 0 1.5 0.15 1 1 1 1000 1 NA #> 2 2 1 0 1.5 0.15 1 1 1 1000 1 NA #> 3 3 1 0 1.5 0.15 1 1 1 1000 1 NA# this is: fullfact(sir2)#> p_S0 p_I0 p_R0 p_beta p_gamma r_S r_I r_R tmax seed output #> 1 1 2 0 1.5 0.15 1 1 1 1000 1 NA #> 2 2 2 0 1.5 0.15 1 1 1 1000 1 NA #> 3 3 2 0 1.5 0.15 1 1 1 1000 1 NA #> 4 1 1 0 1.5 0.15 1 1 1 1000 1 NA #> 5 2 1 0 1.5 0.15 1 1 1 1000 1 NA #> 6 3 1 0 1.5 0.15 1 1 1 1000 1 NA# 2. Second type of use: by providing vectors of values to overwrite elements # of the "experiment" object and then expand it into full factorial design: fullfact(sir2, p_S0 = 1:3, p_I0 = 4:5)#> p_S0 p_I0 p_R0 p_beta p_gamma r_S r_I r_R tmax seed output #> 1 1 4 0 1.5 0.15 1 1 1 1000 1 NA #> 2 2 4 0 1.5 0.15 1 1 1 1000 1 NA #> 3 3 4 0 1.5 0.15 1 1 1 1000 1 NA #> 4 1 5 0 1.5 0.15 1 1 1 1000 1 NA #> 5 2 5 0 1.5 0.15 1 1 1 1000 1 NA #> 6 3 5 0 1.5 0.15 1 1 1 1000 1 NA